If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16n^2+18n=0
a = 16; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·16·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*16}=\frac{-36}{32} =-1+1/8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*16}=\frac{0}{32} =0 $
| 3/8x1/4=2 | | 2(y-2)-8=-4(-5y+6)-4y | | y=0.2(-6)+1 | | 9+3.5x=11+0.5x | | 15=-5/7w | | 4x+5=-7+2x+24 | | 7-4(m-3)-(m+5)=10-3m+4-4(m-6) | | 6=m/3-9* | | 3(3+1)=5(x-2) | | 4x+3=3+2x+10 | | 24=a(0-2)(0+4) | | Y=3x2+10x+7 | | 3x2+2x=0 | | (10z=9)-(4z-4) | | -3(t+2)=8(t+1)-11(t+2) | | X2+5x+6=x+2 | | y/5+1/5=y/2-1/5 | | 9x2+6x-8=0 | | 3(3+2)=5(x-2) | | -7–19z=-20z | | -4(k-15)=0 | | 4x2+2x-10=0 | | Y=X⁴-3x²-1 | | 5x-2(x-6)=2x+2(x-1 | | 6(x+3)=51 | | 5/3=y-5/4 | | 7-2a(-28)=-70 | | 2.5x+100=6.25+10x | | 2-7a=-70 | | 2*7-a=-30 | | F(x)=3x^+2x+1 | | x+1.5x=49 |